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The Fulton-MacPherson compactification

Let X be a smooth variety over C. In 1994 Fulton and MacPherson introduced their
compactification of the configuration space

U =X"\J 2sp,

where A, is the big diagonal where the points labeled by a and b coincide.

Definition and properties

The Fulton-MacPherson compactification of U,, denoted as X[n], is a smooth, normal
crossings compactification of U,. It is endowed with a flat family F, — X[n] whose fibers
are degenerations of X marked with n distinct labeled points.

In 2014, Routis generalized this construction by assigning weights w = (w, ..., wy),
0 < w; <1, to the points. Routis’ compactification parametrizes degenerations of X
where points can coincide if their total weight is < 1.
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Construction and examples

Construction

Both of these compactifications can be constructed as iterated blow-ups of the “heavy
diagonals” in order of non-decreasing dimension.

Examples

@ When X = CP*, the FM compactification is isomorphic to Mo ,.

o If we further points weighted by w, then Routis’ compactification is Mo .
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A related construction

Consider the deepest diagonal A C X" and the following diagram

D —— X|n]

o f

x —— A —— X",

where 7 is the iterated blow-up construction of X[n].

In 2009 Chen, Gibney and Krashen proved that 7 !(x) is independent of x € A and X.
Define Ty, := m'(x), where d is the dimension of X.

Theorem (Chen, Gibney, Krashen)

Ta,n compactifies the space of configurations of n distinct points on C? modulo
translation and scaling.

Note: Recall that My , parametrizes configurations of n distinct labeled points in CP* up
to the action of PGL,11. By considering point configurations such that the (n+ 1)th
point is co, we are left with configurations of n points in C up to translation and scaling.
In fact, CGK show that

T1,n =2 Mo, ny1.
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Weighted version

In 2016 Gallardo and Routis studied the analog construction using the weighted
Fulton-MacPherson compactification.

Theorem (Gallardo, Routis)

For any w = (w, ..., w,) with 0 < w; < 1 such that wy + -+ + w, > 1, there is a
compactification T, of the moduli space of n distinct points in C? up to translation and

scaling.

Examples:

o Ifw=(1,...,1), then Ty, this recovers the Chen-Gibney-Krashen compactification.
o If w=(1/n,...,1/n), then Ty, = P9"=D=1
o Ifw={(e...,e,1) for 0 <e <1, then T} is a toric variety, which we denote Tj,",j’

and call the higher-dimensional Losev-Manin compactification. Moreover,

M — LM
Tl,n = Mo,n+1-
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The fan of T;"n”

The rays of the fan of T34 are {e1, e, &3, €4,(1,1,0,0),(0,0,1,1)} in Z*.

This corresponds to the blow-up of P° along two disjoint invariant lines.

Let N = Z=1/(S27 59 el = 0) be the lattice of one-parameter subgroups of
P41 with basis {6} with 1 <i<n—1and 1<k <d.

Then, the fan of Tj"‘,f’ in Nr is generated by the rays
{Ef“ 1§ign—1,1gkgd}

U

1<||<n-2, /g{1,...,n—1}}.

{z(eﬂ.“ﬂ;f)
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Structural results

Theorem (Gallardo, —, Gonzilez, Routis, 2023)

The compactification Tc’;,",f of the moduli space of n points in A? up to translation and
scaling satisfies the following:

o Tj! is isomorphic to the normalization of a Chow quotient (P?)"~ /¢, C*.

@ Thereisa § C ij’ﬂ such that the blow-down map Ty, — ij\: factors as
Tg,n — Bls T — T4,

and Bls ij‘,ﬁ’ is not a Mori dream space for n > 9.

° ij‘: is a locally trivial toric fibration over (P?~1)"=*, with fiber isomorphic to the

. — M
Losev-Manin space Mg 1.
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Generalizing this story

We construct three different moduli spaces related to configurations of distinct ordered
points in a flag of affine spaces

C*D>C*2...2C™.
o A weighted Fulton-MacPherson-type compactification.
@ A weighted compactification for configurations defined up to translation and scaling,
generalizing Chen-Gibney-Krashen's moduli spaces of points in affine space up to

translation and scaling.

@ A compactification where points are allowed to collide, related to Kim-Sato's
generalized Fulton-MacPherson.

Toric compactifications

These moduli spaces admit toric compactifications generalizing the Losev-Manin space.
Their corresponding polytopes are polymatroids.

o Introduced by Edmonds in the 70s in connection with combinatorial optimization.
o Generalize matroids.

@ Model subspace arrangements instead of only hyperplane arrangements.
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Definition
Let [n] :={1,..., n}, and consider a surjective map 7 : A — [n] of finite sets. The
n-tuple

a:=(a,...,an), ai =7 (i)

is the cage or caging associated to 7.

@ Suppose a1 > -+ > a,. A cage defines a flag of vector spaces:

c*oC*®2..-2C™M

@ A collection of points in the flag is an element of C* := C* x C® x --- x C™.

Parametrization problem: Collections of n ordered distinct points (pi, ..., pn) € C*.

These are parametrized by
e\ U an
I1C[n],[1]>2
where
1={peCp=pVijel}
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Theorem 1 (Gallardo, — , Gonzalez)

There exists a smooth, normal crossings, geometric compactification T of the moduli
space of n distinct labeled points in the flag C*" C C®-1 C -.. C C™, up to scaling and
translation along C*".

(1) fw={(e,...,e,1) with e < 1, then T}, := T is isomorphic to the
polypermutohedral toric variety associated to a. We refer to this as the Losev-Manin
compactification.

(2) Let T? denote the compactification corresponding to the weight w = (1,...,1).
Just as in Kapranov's construction of My ,, there is a sequence of smooth blow-ups

T2 TEM N P31+---+3(n71)*1'

(3) TP is a non-trivial, locally trivial fibration
— LM
Mo pis ——— Tim
n—1ma;—1
II=P

Remark: If a=(d,...,d), then T§ = T4 ,, Gallardo-Routis’ moduli spaces. If d =1,
then T“a, = MO,WU{I}-



Theorem 2 (Gallardo, —, Gonzélez)

Consider an n-tuple a = (ay, ..., ay) € ZZ,. There exist a smooth, normal crossings,

geometric compactification ]P)E:] of the configuration space of n non-necessarily distinct
points in a flag of affine spaces such that:

(1) The variety PP is constructed as an iterated blow-up of [T, P* along torus
invariant subvarieties. In particular, it is a toric variety itself.

(2) IPE‘,] is isomorphic to the polystellahedral variety associated to a.
(3) There exist an open (]P’[,_,a]) - ]P’E] and a geometric quotient such that

T2, = (P[:;])O //Gm.
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Proof sketches

@ The main ingredient in the construction of these moduli spaces is Li Li's theory of
wonderful compactifications. This gives an explicit construction of our spaces as
iterated blow-ups along a building set.

@ The universal families are constructed by embedding our spaces in other known
compactifications—Routis’ weighted Fulton-MacPherson and Kim-Sato's generalized
Fulton-MacPherson.

@ Toric compactifications are obtained by identifying the torus-invariant strata in the
building set.

o ldentifying the spaces with the polypermutohedral and polystellahedral varieties
requires some hard work.
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Constructing the toric compactifications

The polypermutohedral and polystellahedral varieties correspond to polytopes known as
polypermutohedron and polystellahedron. These are examples of nestohedra (easy to
work with in general!)

Definition

A combinatorial building set over the set [n] is a collection B C 2[" \ () such that
o {i} € Bforallie€ln]

olfl,JeBandINJ#D, then IUJ € B.

Nestohedra are polytopes constructed from combinatorial building sets.

Start with the inner normal fan ¥X,_; of the (n — 1)-simplex, whose facets have been
labeled by [n]. Then, take the star subdivision along the cones 0, € ¥,_1 for I € B in
such a way that larger sets come first.
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Example 1: The permutohedron is the nestohedron of the building set By = 2l \ 0. Its
corresponding toric variety is isomorphic to Losev-Manin's space Mg n42.

Example 2: Let G be the star graph with vertices {0, ..., n}. Define the building set
Bstar = {I C{0,...,n}| G| is connected}.

The stellahedron is the nestohedron of this building set.
@
—N<—@

«

@
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Pullback of building sets

Polypermutohedra and polystellahedra are defined as “expansions” of permutohedra and
stellahedra by Crowley-Huh-Larson-Simpson-Wang and Eur-Larson. We rephrase this in
terms of pullbacks of a building sets.

Definition

Let B be a building set on [n] and consider a function 7 : A — [n] of finite sets. The
pullback of B along 7 is the building set on A defined as

7 B={{i}|i€c AAu{z"" ()| € B}.

@ The polypermutohedron with cage a is the nestohedron corresponding to the
pullback of By along a caging 7 : A — [n] with cage a.

@ The polystellahedron with cage a is the nestohedron corresponding to the pullback
of Bstar along a caging 7 : AU {0} — [n] U {0} such that 7~1(0) = {0}.

@ These are the base and independence polytopes, resp., of a polymatroid.

Javier Gonzalez Anaya (with P. Gallardo and J.L. GonzModuli spaces of points in flags of affine spaces and pc



Consider the building set Byy = 2 \ 0, and the caging
m:{1,2,3,4} - {1,2}, 7 '(1)={1,2}, 7 '(2) = {3,4}.

Then,
B ={{1,2},{3,4},{1,2,3,4}} U Singletons.

The resulting polytope is the polypermutohedron with cage (2,2, 2).
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PP as GIT quotient of PS

The isomorphism
Tiw = (PR //Gom,

where T}y, and PE] are the polypermutohedral and polystellahedral varieties with cage a
follows from the known fact that the polypermutohedron with cage a is a facet of the

polystellahedron with cage a.
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Conclusion: Big picture

Consider any n-tuple a = (a1,...,a,) and m = >_ a;. Let 1™ denote the
weight vector with m ones.

It follows from the pullback construction that the polypermutohedron and
polystellahedron with cage 1™ are permutohedra and stellahedra.

m Cc* —IM _—
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[Ii, P part a1
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